Chem Rxs, Stoich

"The world of chemical events is like a stage on which scene after scene is enacted in a continuous succession. The players on this stage are the elements. To each of them is assigned a characteristic role, either that of supernumerary or that of an actor playing a part."

Clemens Alexander Winkler, 1897
Almost all the chemical processes which occur in nature ... take place between substances in solution."

Friedrich Wilhelm Ostwald, 1890
(Nobel Prize for Chemistry in 1909 "in recognition of his work on catalysis and for his
 investigations into the fundamental principles governing chemical equilibria and rates of reaction".)

4.4 - Types of Chemical Reactions

dissolution reactions (solvent, solute) - two (or more) substances form homogeneous mixture; dispersion on the level of individual molecules or ions precipitation reactions - a substance exceeds its solubility in another, ppt

Dissolution Reactions

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I}) \quad->\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{a q})
$$

molecular compounds in water (e.g., solid urea dissolving)

$$
\mathrm{H}_{2} \mathrm{NCONH}_{2}(\boldsymbol{s}) \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{NCONH}_{2}(\mathbf{a q})
$$

ionic compounds in water (dissociation, ionization)

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\boldsymbol{s}) \rightarrow 2 \mathrm{Na}^{+}(\mathbf{a q})+\mathrm{CO}_{3}^{-}(\mathbf{a q})
$$

water is polar
electrolytes (conduct electricity better than pure water)
water is polar - unequal charge distribution strong: $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}), \mathrm{HCl}(\mathrm{aq})$
weak (produce less ions => lower conductivity): ammonia, acetic acid nonelectrolyte: ethanol, sugar

Dissolution Reactions

FIG II - Dissolution of NaCl in Water

FIG I - Dissolution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in Water

Stoichiometry of Reactions in Solution

How to express composition: solute $\mathrm{A}+$ solvent $=$ solution mass percent $=$ mass A/mass solution x 100 mole fraction, $X_{\mathrm{A}}=$ moles $\mathrm{A} /$ moles of solution molarity, $\mathrm{M}_{\mathrm{A}}=$ moles of $\mathrm{A} / 1 \mathrm{~L}$ of solution molality, $m_{A}=$ moles of $\mathrm{A} / 1 \mathrm{~kg}$ of solvent (later)

Molarity - Measuring Atoms in Solution

$$
M=n / L
$$

Solutions

EX 2. What is the molarity of pure water? $\left(M_{\mathrm{H} 2 \mathrm{O}}=18.0152 \mathrm{~g} \mathrm{~mol}^{-1}, d=1.00\right.$ $\mathrm{g} \mathrm{cm}^{-3}$)
$M=n / L \quad$ how many moles of water are in a $L ? d=1.00 \mathrm{~g} \mathrm{~cm}^{-3}=>$

$$
\begin{aligned}
1000 \mathrm{~g} / \mathrm{L}=>\mathrm{M} & =(1000 / 18.0152) / \mathrm{L} \\
& =55.5 \mathrm{M}
\end{aligned}
$$

EX 3. What mass of silver nitrate is needed to make $100 . \mathrm{mL}$ of a 0.100 M AgNO_{3} solution? $\left(M_{\mathrm{AgNO} 3}=169.874 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

$$
\begin{aligned}
& \mathrm{M}=n / L=(m / M) / \mathrm{L} \\
& 0.100=(m / 169.874) / 0.100 \\
& =>m=1.70 \mathrm{~g}
\end{aligned}
$$

Diluting Solutions

When you dilute or mix solutions the total number of moles of solute does not change

$$
\text { (1 is initial) } n_{1}=M_{1} V_{1}=n_{2}=M_{2} V_{2}(2 \text { is final })
$$

EX 4. What is the molarity of the solution prepared by adding 29.0 mL of 17.4 M acetic acid to a $500-\mathrm{mL}$ volumetric and filling with distilled water?

$$
\begin{aligned}
n_{1}=M_{1} V_{1}=n_{2}=M_{2} V_{2} \Rightarrow M_{2} & =M_{1} V_{1} / V_{2} \\
& =29.0 \mathrm{~mL}(17.4) / 500 \mathrm{~mL} \text { RATIO } \\
& =1.0092 \Rightarrow 1.01 \mathrm{M}
\end{aligned}
$$

EX 5. How would you prepare 1.5 L of $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ from a 16 M supply?

$$
\begin{aligned}
V_{1} & =M_{2} V_{2} / \mathrm{M}_{1} \\
& =0.10(1.5) / 16 \\
& =0.0094 \mathrm{~L}=9.4 \mathrm{~mL}
\end{aligned}
$$

Mixing Solutions

When you dilute or mix solutions the total number of moles of solute does not change

$$
n_{\text {tot }}=n_{1}+n_{2}=\mathrm{M}_{1} V_{1}+\mathrm{M}_{2} V_{2}=\mathrm{M}\left(V_{1}+V_{2}\right)
$$

EX 6. What is the molarity of the sodium chloride solution obtained from mixing 53 mL of 0.52 M NaCl with 62 mL of 0.47 M NaCl ?

$$
\begin{gathered}
\mathrm{M}=[53(0.52)+62(0.47)] /(53+62)=0.49 \mathrm{M} \\
\text { makes sense, between } 0.47 \text { and } 0.62 \mathrm{M}
\end{gathered}
$$

Density in Molarity Calculations

EX 7. A solution which is 5.50% (by mass) sulfuric acid ($M=98.0778$) has a density of $1.0352 \mathrm{~g} \mathrm{~cm}^{-3}$. What is the molarity of the solution?
the power of ratios!
assume 100 g of solution
($5.50 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} / 100 \mathrm{~g}$ sol'n) ($1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} / 98.0778 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$)
\times (1.0352 g sol'n $/ 1 \mathrm{~cm}{ }^{3}$ sol'n) (1000 cm of sol'n / L sol'n)
= 0.581 M

Precipitation Reactions

STRATEGY (do not memorize solubility tables)

- write down formulas of reactants
- identify nature of reactants in solution (if ionic, what ions are in solution)
- consult solubility table for combination of cations/anions that will precipitate
- write balanced equation
- write total ionic equation
- write net ionic equation - omits spectator ions - CHEMISTRY

Solubility Rules

Precipitation Reactions

For example: if aqueous solutions of sodium chloride and silver nitrate were mixed, the solubility table identifies silver chloride as an insoluble species so
balanced equation:

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

total ionic equation: [never break apart (s), (I), (g)]

$$
\begin{aligned}
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}^{+}(\mathrm{aq})+ & \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \\
& \mathrm{AgCl}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned}
$$

net ionic equation (contains the CHEMISTRY):

$$
\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})
$$

Precipitation Reactions

EX 8. Aqueous solutions of iron(III) bromide and potassium sulfide are mixed. Write a net ionic equation for the reaction.
balanced equation:

$$
2 \mathrm{FeBr}_{3}(\mathrm{aq})+3 \mathrm{~K}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{KBr}(\mathrm{aq})
$$

total ionic equation:

$$
\begin{aligned}
2 \mathrm{Fe}^{2+}(\mathrm{aq})+6 \mathrm{Br}^{-}(\mathrm{aq})+ & 6 \mathrm{~K}^{+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq}) \rightarrow \\
& \mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{~K}^{+}(\mathrm{aq})+6 \mathrm{Br}^{-}(\mathrm{aq})
\end{aligned}
$$

net ionic equation (contains the CHEMISTRY):

$$
2 \mathrm{Fe}^{2+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})
$$

Precipitation Reactions

EX 9. Aqueous solutions of sodium hydroxide and magnesium chloride are mixed. Write a net ionic equation for the reaction.
balanced equation:

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{MgCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+6 \mathrm{NaCl}(\mathrm{aq})
$$

total ionic equation:

$$
\begin{aligned}
2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+ & \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \\
& \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
\end{aligned}
$$

net ionic equation (contains the CHEMISTRY):

$$
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})
$$

"There are three kinds of lies: lies, damned lies, and statistics."

Benjamin Disraeli, 1895

Statistics

H_Exp 5 (next week)

H 4-1 - Gaussian Distribution

Central Limit Theorem - random variable

H 4-6 - Grubbs Test

To determine whether a particular data point can be excluded based upon its questionable veracity, form the Grubbs statistic, G.

$$
G_{\text {calculated }}=\frac{\left|x_{\text {questionable }}-\langle x\rangle\right|}{s}
$$

If $G_{\text {calculated }}>G_{\text {table }}$ then the point can be excluded with the chosen confidence level (here 95\%). The mean and standard deviation will need to be recalculated. Hint: generally do not exclude a data point unless you are certain that an error occurred in its measurement. Never exclude more than one point. Always use a value of G of at least a 95% confidence level.

$$
\begin{aligned}
& G_{\text {calc }}<G_{\text {table }}=>\text { do not drop point } \\
& G_{\text {calc }}>G_{\text {table }}=>\text { drop point }
\end{aligned}
$$

TABLE 4-6	Critical values of \boldsymbol{G}
for rejection of outlier	
Number of	
observations	G
4	(95\% confidence)
5	1.463
6	1.672
7	1.822
8	1.938
9	2.032
10	2.110
11	2.176
12	2.234
15	2.285
20	2.409
	2.557

H 4-2 - F Test: Comparison of Standard Deviations

To compare the standard deviations of two different sets of measurements to determine if they are or are not statistically the same
n_{1} measurements, $<x_{1}>$ mean, s_{1} standard deviation
n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation

H 4-2 - F Test: Comparison of Standard Deviations

To compare the standard deviations of two different sets of measurements to determine if they are or are not statistically the same
n_{1} measurements, $\left\langle x_{1}\right\rangle$ mean, s_{1} standard deviation n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation
determine

$$
\begin{gathered}
F_{\text {calculated }}=\left(s_{1} / s_{2}\right)^{2} \text { where } F \geq 1 \\
F_{\text {table }}=\underset{\text { EXCEL }}{\text { FINV }(0.05, \text { dof1,dof2 }), \text { dof1 }=n_{1}-1, \text { dof2 }=n_{2}-1}
\end{gathered}
$$

H 4-2 - F Test: Comparison of Standard Deviations

To compare the standard deviations of two different sets of measurements to determine if they are or are not statistically the same
n_{1} measurements, $\left\langle x_{1}\right\rangle$ mean, s_{1} standard deviation n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation determine

$$
F_{\text {calculated }}=\left(s_{1} / s_{2}\right)^{2} \text { where } F \geq 1
$$

$F_{\text {calc }}<F_{\text {table }}=>$ statistically the same at 95\% confidence
$F_{\text {calc }}>F_{\text {table }}=>$ statistically different

H 4-4 - Case 2 : Comparing Means

To compare the means of two different sets of measurements to determine if they are statistically the same or different
n_{1} measurements, $<x_{1}>$ mean, s_{1} standard deviation
n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation

H 4-4 - Case 2 : Comparing Means

To compare the means of two different sets of measurements to determine if they are statistically the same or different
n_{1} measurements, $\left\langle x_{1}\right\rangle$ mean, s_{1} standard deviation
n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation
if $F_{\text {calc }}<F_{\text {table }}$

H 4-4 - Case 2 : Comparing Means

To compare the means of two different sets of measurements to determine if they are statistically the same or different
n_{1} measurements, $<x_{1}>$ mean, s_{1} standard deviation n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation
if $F_{\text {calc }}<F_{\text {table }}$
determine $s_{\text {pooled }}, t_{\text {calc }}$

$$
t_{\text {table }}=\underset{\text { EXCEL }}{\operatorname{TINV}(0.05, \text { dof })}
$$

$$
\begin{aligned}
t_{\text {calculated }} & =\frac{\left|\left\langle x_{1}\right\rangle-\left\langle x_{2}\right\rangle\right|}{s_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}} \\
s_{\text {pooled }} & =\sqrt{\frac{s_{1}^{2}\left(n_{1}-1\right)+s_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}}
\end{aligned}
$$

H 4-4 - Case 2 : Comparing Means

To compare the means of two different sets of measurements to determine if they are statistically the same or different
n_{1} measurements, $<x_{1}>$ mean, s_{1} standard deviation n_{2} measurements, $\left\langle x_{2}\right\rangle$ mean, s_{2} standard deviation

$$
\text { if } F_{\text {calc }}<F_{\text {table }}
$$

determine $s_{\text {pooled }}, t_{\text {calc }}$

$$
\begin{aligned}
t_{\text {calculated }} & =\frac{\left|\left\langle x_{1}\right\rangle-\left\langle x_{2}\right\rangle\right|}{s_{\text {pooled }}} \sqrt{\frac{n_{1} n_{2}}{n_{1}+n_{2}}} \\
s_{\text {pooled }} & =\sqrt{\frac{s_{1}^{2}\left(n_{1}-1\right)+s_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}}
\end{aligned}
$$

